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ABSTRACT

We report a systematic analysis of the relationship between salt bridge composition and 14-helix structure within a family of model â-peptides
in aqueous buffer. We find an inverse relationship between side-chain length and the extent of 14-helix structure as judged by CD. Introduction
of a stabilizing salt bridge pair within a previously reported â-peptide ligand for hDM2 led to changes in structure that were detectable by
NMR.

â-Peptides adopt a diverse array of secondary structures
including a variety of helices, pleated-sheets, and tubes.1-5

â-Peptides composed ofâ3-amino acids often assemble into
a unique helical form called the 14-helix that is characterized
by a defined set of long-range hydrogen bonds and three
distinct faces.6 Although the majority of published work in

the â3-peptide field describes molecules folded in organic
solvents,5 in 2001 Seebach and DeGrado reported indepen-
dently thatâ3-peptides containing an alternating pattern of
oppositely charged side chains at positionsi andi+3 on two
of three helical faces displayed moderate levels of 14-helix
structure in aqueous buffer.7-9 We subsequently demon-
strated that the requirement for stabilizing salt bridges on
two helical faces could be lifted by introducing side chains
that stabilize the 14-helix macrodipole.10,11 We established
thatâ-peptide 14-helices stabilized in this way tolerate a vast
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array of proteinogenic side chains10 and can be modified to
generate molecules that bind with moderate affinity to the
proteins hDM212 and HIV gp41.13 Here, we describe experi-
ments that identify the charged side chain partners that best
stabilize the 14-helix as judged by circular dichroism (CD)
spectroscopy. We demonstrate thatâ-peptides containingâ3-
HAspartate and either (S)-2,4-Homodiaminobutyric acid (â3-
HDab, Figure 1) orâ3-HOrnithine along one helical face

provide the greatest level of 14-helix stabilization. Introduc-
tion of the 14-helix stabilizingâ3-HOrnithine/â3-HAspartate
salt bridge into the previously reported hDM2 ligand,â53-
1, led to changes in 14-helix structure that could be detected
by 2D-NMR spectroscopy.

We studied a set of sixâ-dodecamers to evaluate the effect
of side-chain identity on 14-helix stability in water (Figure
2). All six molecules are derivatives of the previously

reportedâ-peptide2,10,11 in which â3-HOrnithine (O) orâ3-
HDab (Dab) replaceâ3-HLysine (K) andâ3-HAspartate (D)
replacesâ3-HGlutamate (E). All sixâ-dodecamers contain
helix-promoting10,11,14aliphaticâ3-HValine residues at posi-
tions 2, 5, 8, and 11 along one face of the putative 14-helix
and â3-HAlanine residues at positions 3, 6, and 9 along a
second face. Each molecule also contained aâ3-HTyrosine

residue to simplify spectrophotometric concentration deter-
mination. Theâ3-peptides were synthesized using standard
Fmoc solid-phase methods,15-17 purified using reverse phase
HPLC, and their sequences confirmed using MALDI-TOF
mass spectrometry.18 All six molecules are monomeric at
80 µM as determined by analytical ultracentrifugation.

We used circular dichroism (CD) spectroscopy to monitor
the extent of 14-helix structure in eachâ-peptide at 25°C.
While CD data onâ-peptides must be interpreted carefully,19

it is reasonable to assume that, forâ3-peptides in particular,
changes in intensity of the 14-helical signature correlate to
changes in 14-helical population.3,12,19,20The CD spectra of
all six molecules are consistent with a 14-helix structure,
with ellipticity minima between 211 and 214 nm, ellipticity
maxima between 195 and 198 nm, and a crossover between
negative and positive ellipticity between 200 and 202 nm
(Figure 3a, Table 1).1,5,6 The maximal values of negative

ellipticity range from-11500 deg‚cm2‚dmol-1 to -19500
deg‚cm2‚dmol-1, representing a change of greater than 40%.
The CD data suggest that the level of 14-helix structure
among the six molecules is, from greatest to least:2DabD
> 2OD > 2DabE > 2KD > 2 > 2KE.
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Figure 1. (S)-2,4-Homodiaminobutyric acid (â3-HDab).

Figure 2. Helical net diagrams ofâ3-peptides studied herein.

Figure 3. CD spectra of2, 2KE, 2OD, 2KD, 2DabD, 2DabE at
80 µM (PBC buffer) at: (a) pH 7 (b) pH 2 (c) pH 12. (d) MRE214

of 100 µM 2DabE and2DabD Vs [NaCl]0.5.

Table 1. Minimum MRE (deg‚cm2‚dmol-1‚residue-1) for
â-Peptides Studied Herein at 80µM and 25°C

-θmin

(pH 7)
-θmin

(pH 2)
-θmin

(pH 12)
%∆

(pH 2/7)
%∆

(pH 12/7)

2DabD 19500 9690 4970 50 74
2OD 17100 8710 3370 49 80
2DabE 15200 5350 4110 65 73
2KD 14400 8040 2880 44 80
2 13900 4130 3190 70 77
2KE 11500 2570 376 78 97
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Several trends emerge when the relative stabilities of the
six â-peptides are compared. First, molecules containingâ3-
HAsp display higher levels of 14-helix structure than
otherwise identical molecules containingâ3-HGlu (compare
2DabD vs 2DabE, 2OD vs 2, and2KD vs 2KE). Second,
molecules containingâ3-HDab display higher levels of 14-
helix structure than otherwise identical molecules containing
â3-HOrn (compare2DabD vs 2OD, and 2DabE vs 2).
Finally, molecules containingâ3-HOrn display higher levels
of 14-helix structure than otherwise identical molecules
containingâ3-HLys (compare2OD vs2KD, and2 vs2KE).
These trends suggest that the level of 14-helix structure in
â-peptides related to2 correlates inversely with side chain
length: shorter side chains are better. Interestingly, solvent
exposed salt bridges often contribute minimally to protein
stability,21 and glutamate, not aspartate, is the preferred
partner for intra-R-helical salt bridges in proteins of known
structure.22

The 14-helix stabilities of2DabD and 2DabE were
examined further by monitoring their CD spectra as a
function of NaCl concentration at pH 7 in PBC buffer (Figure
3d). Both2DabD and2DabE become significantly less 14-
helical as the NaCl concentration increases from 0 to 1.5 M
as judged by the change in MRE214. In both cases the
dependence of MRE214 on NaCl concentration is approxi-
mately sigmoidal with a midpoint at 0.5 M NaCl; the plateaus
observed at low salt suggest the formation of a stable
conformation under these conditions. These CD data are
highly reminscent of those reported by DeGrado for a 15-
residueâ-peptide containingâ3-HLys/â3-HGlu salt-bridges
on two 14-helical faces and a C-terminal D-Asp; this
molecule also showed a sigmoidal dependence of MRE214

on NaCl concentration with a midpoint of 0.4 M NaCl.8

â53-112 is a structurally well-characterized23 â-peptide that
binds the oncoprotein hDM2 (Figure 4a). Based on the CD
spectra of2 and2OD, we hypothesized that substitution of
â3-HAsp for bothâ3-HGlu residues inâ53-1would lead to
differences in structure observable by NMR. As expected,
the ROESY spectrum ofâ53-1Dat 10°C in CD3OH showed
multiple (ten of thirteen possible) long-range ROEs charac-
teristic of the 14-helix conformation: five of seven possible
CRH(i) f CâH(i+3) ROEs and five of six possible CNH(i)
f CâH(i+3) ROEs (Figure 4b). Additional backbone ROEs

may have been present but were obscured by resonance
overlap, as was true forâ53-1.12 No backbone ROEs
inconsistent with the 14-helix were observed. Overall, the
ROESY spectrum ofâ53-1D closely matched that ofâ53-
1, further supporting the conclusion thatâ53-1Dassembles
into a 14-helix.

Interestingly, aliphatic 13C-HSQC18 and TOCSY24,25

spectra revealed that the vicinal protons in theγ position of
â3-HOrn at position 1 were clearly resolved in the NMR
spectrum ofâ53-1Dbut notâ53-1(Figure 5a,c). The portion

of the aliphatic13C-HSQC NMR spectrum shown in Figure
5 identifies the interactions between theγ protons onâ3-
HOrn1 and 7 and the correspondingγ carbon withinâ53-
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Figure 4. (a) Helical net diagrams depictingâ53-1 andâ53-1D.
(b) Backbone ROEs observed in the ROESY spectrum ofâ53-1D;
CRH(i) f CâH(i+3) ROEs are in red, CNH(i) f CâH(i+3) ROEs
are in blue.

Figure 5. Differences in the 2D-NMR spectra ofâ53-1D (a, b)
andâ53-1 (c, d). Regions of the13C-HSQC spectra are shown in
a and c; differences in the ROESY spectra are shown in b and d.
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1D (Figure 5a) andâ53-1 (Figure 5c). In the case ofâ53-1,
the γ protons of bothâ3-HOrn1 and 7 were broadened due
to exchange and the exact positions of the two peaks could
not be fully defined. In the case ofâ53-1D, however, theγ
protons of â3-HOrn1 were narrower and resolved. The
differences betweenâ53-1D and â53-1 were also seen in
the ROESY spectra (Figure 5b,d). In the case ofâ53-1D,
we observed six long-range ROEs between protons onâ3-
HOrn and those on proximalâ3-HAsp residue(s). These
ROEs include threesthose between protons ofâ3-HAsp4 and
â3-HOrn7sthat were not observed in the ROESY spectrum
of â53-1 (Figure 5b,d). The ROESY spectra ofâ53-1Dand
â53-1also differed in terms of the distribution of long-range
ROEs throughout the sequence: the spectrum ofâ53-1D
showed comparably fewer unambiguous ROEs betweenâ3-
HOrn1 orâ3-HOrn7 andâ3-HAsp4 and 10 but comparably
greater ROEs betweenâ3-HOrn7 andâ3-HAsp4. Overall,
although the CD spectra ofâ53-1 and â53-1D are nearly
identical, the NMR data implies a subtle increase in the order
of the salt-bridge side-chains inâ53-1Dwhen compared with
â53-1.

In summary, here we provide evidence that salt bridge
identity exerts an influence on 14-helix stability and identify
the â3-HDab/â3-HAsp pair as the most stabilizing of those
salt bridges studied. With this information in place, we can
now apply the structure-stabilizing salt-bridge effects to the
design of other biologically activeâ-peptides, thereby further
assessing the delicate connection betweenâ-peptide structure
and function.
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