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We report a systematic analysis of the relationship between salt bridge composition and 14-helix structure within a family of model -peptides
in aqueous buffer. We find an inverse relationship between side-chain length and the extent of 14-helix structure as judged by CD. Introduction
of a stabilizing salt bridge pair within a previously reported -peptide ligand for hDM2 led to changes in structure that were detectable by
NMR.

B-Peptides adopt a diverse array of secondary structuresthe 33-peptide field describes molecules folded in organic
including a variety of helices, pleated-sheets, and tébes. solvents, in 2001 Seebach and DeGrado reported indepen-
B-Peptides composed @f-amino acids often assemble into  dently thatS3-peptides containing an alternating pattern of
a unique helical form called the 14-helix that is characterized oppositely charged side chains at positioaadi+3 on two

by a defined set of long-range hydrogen bonds and threeof three helical faces displayed moderate levels of 14-helix
distinct faces. Although the majority of published work in  structure in aqueous buffér? We subsequently demon-
strated that the requirement for stabilizing salt bridges on
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vania. thatS-peptide 14-helices stabilized in this way tolerate a vast
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array of proteinogenic side chaifisnd can be modified to
generate molecules that bind with moderate affinity to the
proteins hDM22? and HIV gp41'2 Here, we describe experi-

residue to simplify spectrophotometric concentration deter-
mination. TheB3-peptides were synthesized using standard
Fmoc solid-phase methoéfs '’ purified using reverse phase

ments that identify the charged side chain partners that bestHPLC, and their sequences confirmed using MALDI-TOF

stabilize the 14-helix as judged by circular dichroism (CD)
spectroscopy. We demonstrate thgieptides containing®-
HAspartate and eitheB)-2,4-Homodiaminobutyric acig¢-
HDab, Figure 1) or3®-HOrnithine along one helical face

HoN

HZNQOH

Figure 1. (S)-2,4-Homodiaminobutyric acid §fHDab).

provide the greatest level of 14-helix stabilization. Introduc-
tion of the 14-helix stabilizing?>-HOrnithinef33-HAspartate
salt bridge into the previously reported hDM2 ligaiih3-
1, led to changes in 14-helix structure that could be detected
by 2D-NMR spectroscopy.

We studied a set of sif#-dodecamers to evaluate the effect

of side-chain identity on 14-helix stability in water (Figure
2). All six molecules are derivatives of the previously
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Figure 2. Helical net diagrams gf3-peptides studied herein.

reported3-peptide2,1%1tin which 53-HOrnithine (O) ors3-
HDab (Dab) replac@3-HLysine (K) and33-HAspartate (D)
replaces33-HGlutamate (E). All six3-dodecamers contain
helix-promoting®!t-*4aliphatic5*-HValine residues at posi-
tions 2, 5, 8, and 11 along one face of the putative 14-helix
and 33-HAlanine residues at positions 3, 6, and 9 along a
second face. Each molecule also containgld-BiTyrosine
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mass spectrometf. All six molecules are monomeric at
80 uM as determined by analytical ultracentrifugation.

We used circular dichroism (CD) spectroscopy to monitor
the extent of 14-helix structure in eaghpeptide at 25C.
While CD data orB-peptides must be interpreted carefufly,
it is reasonable to assume that, fiSrpeptides in particular,
changes in intensity of the 14-helical signature correlate to
changes in 14-helical populatiéA?%2°The CD spectra of
all six molecules are consistent with a 14-helix structure,
with ellipticity minima between 211 and 214 nm, ellipticity
maxima between 195 and 198 nm, and a crossover between
negative and positive ellipticity between 200 and 202 nm
(Figure 3a, Table 1)%6 The maximal values of negative
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Figure 3. CD spectra oR, 2KE, 20D, 2KD, 2DabD, 2DabE at
80uM (PBC buffer) at: (a) pH 7 (b) pH 2 (c) pH 12. (d) MRE
of 100uM 2DabE and 2DabD vs [NaCl]%5.

ellipticity range from—11500 deg-chdmol* to —19500
degcnr-dmol?, representing a change of greater than 40%.
The CD data suggest that the level of 14-helix structure
among the six molecules is, from greatest to le@&fdabD

> 20D > 2DabE > 2KD > 2 > 2KE.

Table 1. Minimum MRE (deg-cr-dmol*-residue?) for
pB-Peptides Studied Herein at 81 and 25°C

—Omin —Omin —Omin %A 20N

GHT  (pH2 (pH12) (GH2T) (pH127)
2DabD 19500 9690 4970 50 74
20D 17100 8710 3370 49 80
2DabE 15200 5350 4110 65 73
2KD 14400 8040 2880 44 80
2 13900 4130 3190 70 77
2KE 11500 2570 376 78 97
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Several trends emerge when the relative stabilities of the ||| GGG

six 3-peptides are compared. First, molecules contaififag

HAsp display higher levels of 14-helix structure than ao’ IS
otherwise identical molecules containifgtHGIu (compare il i e A-:cié'_;l
2DabD vs 2DabE, 20D vs 2, and2KD vs 2KE). Second, uw“"“v’\/\wa ﬂm""“wm—j-_»um
molecules containing®-HDab display higher levels of 14- i on - B 0
helix structure than otherwise identical molecules containing BBy PG,
B3-HOrn (compare2DabD vs 20D, and 2DabE vs 2). b M W

Finally, molecules containing®-HOrn display higher levels

of 14-helix structure than otherwise identical molecules H.mM HN
containings®-HLys (compare0D vs 2KD, and2 vs 2KE). iﬂ ’{j‘%i iﬁ U j’j\j
These trends suggest that the level of 14-helix structure in " v} ” EQH” :?-15' A .‘ H i' E‘
[-peptides related t8 correlates inversely with side chain - t L_——
length: shorter side chains are better. Interestingly, solventFigulre 4. (a) Helical net diagrams depictin@3-1and53-10.
exposed salt bridges often contribute minimally to protein (b) Backbone ROES observed in the ROESY Spectruf§5at LD

stability?* and glutamate, not aspartate, is the preferred 2H(i) — CsH(i+3) ROES are i red, GH(i) — C4H(i+3) ROEs
partner for intra-a-helical salt bridges in proteins of known are in blue.

structure??

The 14-helix stabilities of2DabD and 2DabE were
examined further by monitoring their CD spectra as a may have been present but were obscured by resonance
function of NaCl concentration at pH 7 in PBC buffer (Figure overlap, as was true fof53-112 No backbone ROEs
3d). Both2DabD and2DabE become significantly less 14-  inconsistent with the 14-helix were observed. Overall, the
helical as the NaCl concentration increases from 0 to 1.5 M ROESY spectrum 0f53-1D closely matched that g853-
as judged by the change in MRE In both cases the 1, further supporting the conclusion th#83-1D assembles
dependence of MRE, on NaCl concentration is approxi- into a 14-helix.
mately sigmoidal with a midpoint at 0.5 M NaCl; the plateaus  |nterestingly, aliphatic 3C-HSQG® and TOCSY425
observed at low salt suggest the formation of a stable spectra revealed that the vicinal protons in #hgosition of
conformation under these conditions. These CD data areg3-HOrn at position 1 were clearly resolved in the NMR

highly reminscent of those reported by DeGrado for a 15- spectrum of353-1Dbut not353-1(Figure 5a,c). The portion
residueS-peptide containingg®-HLys/*-HGIu salt-bridges

on two 14-helical faces and a C-terminal D-Asp; this _

molecule also showed a sigmoidal dependence of MRE

—

on NaCl concentration with a midpoint of 0.4 M Na&l. 19 18 17 16 15 14 s 17 15 15 14
p53-1*is a structurally well-characteriz&g3-peptide that P A 258
binds the oncoprotein hDM2 (Figure 4a). Based on the CD § , . 0 0 - B - s
C-:{Di: -3 HT-MOH

spectra o2 and20D, we hypothesized that substitution of o

B3-HAsp for both/53-HGIu residues in853-1would lead to & 25 L (S 2%6
differences in structure observable by NMR. As expected, a Y~ sl %C.D- »
the ROESY spectrum ¢f53-1Dat 10°C in CD;OH showed T e s e e 54
multiple (ten of thirteen possible) long-range ROEs charac- o2 H o)
teristic of the 14-helix conformation: five of seven possible ;4 Be BS 84 OB wme g R R
CoH(i) — CsH(i+3) ROEs and five of six possiblenEl(i) 2. oo 2an MEMNRENCENESS 0
— C4H(i+3) ROEs (Figure 4b). Additional backbone ROEs Em ) 240 240 | .‘Q 2.40
x 24 HeqlO7) > Hy(D4) | 245 245 ' oleds
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1D (Figure 5a) ang853-1 (Figure 5c). In the case (63-1,
the y protons of both33-HOrnl and 7 were broadened due

In summary, here we provide evidence that salt bridge
identity exerts an influence on 14-helix stability and identify

to exchange and the exact positions of the two peaks couldthe 83-HDab/#-HAsp pair as the most stabilizing of those

not be fully defined. In the case p63-1D, however, the
protons of 53-HOrn1 were narrower and resolved. The
differences betweefi53-1D and 353-1 were also seen in
the ROESY spectra (Figure 5b,d). In the casg568-1D,

we observed six long-range ROEs between protong®n
HOrn and those on proxima#®-HAsp residue(s). These
ROEs include threethose between protons 8#-HAsp4 and
B3-HOrn7—that were not observed in the ROESY spectrum
of 553-1(Figure 5b,d). The ROESY spectra@b3-1Dand
p53-1also differed in terms of the distribution of long-range
ROEs throughout the sequence: the spectrun5#-1D
showed comparably fewer unambiguous ROEs betyséen
HOrn1 orB3-HOrn7 ands®-HAsp4 and 10 but comparably
greater ROEs betweebh-HOrn7 andfs®-HAsp4. Overall,
although the CD spectra ¢53-1 and $53-1D are nearly
identical, the NMR data implies a subtle increase in the order
of the salt-bridge side-chains f#53-1Dwhen compared with
p53-1.

810

salt bridges studied. With this information in place, we can
now apply the structure-stabilizing salt-bridge effects to the
design of other biologically activg-peptides, thereby further
assessing the delicate connection betwggeptide structure
and function.
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